Linear Models: Part 1

Author
Published

June 5, 2023

Listening

Loading

library(tidyverse)
library(ggdist)
library(here)

source(here("_defaults.R"))

Simulating a Galton Board

“Suppose you and a thousand of your closest friends line up in the halfway line of a soccer field.”

Ok, so the N is 1+1,000 (“you and 1000 of your closest friends”). Apparently a soccer field is 360 feet long, and an average stride length is something like 2.3 feet.

(360/2)/2.3
[1] 78.26087

We can get in 78 steps from the halfway line to the end of the field.

set.seed(500)

expand_grid(
  person = 1:1001,
  step = 1:78
) |> 
  mutate(
    flip = sample(
      c(-1, 1), 
      size = n(), 
      replace = T
    )
  ) |> 
  mutate(
    .by = person,
    position = cumsum(flip)
  ) ->
  galton_board
galton_board |> 
  mutate(
    .by = c(step, position),
    n = n()
  ) ->
  galton_board
galton_board |> 
  ggplot(
    aes(step, position)
  )+
    geom_line(
      aes(group = person, color = n)
    ) +
  scale_x_reverse()+
  khroma::scale_color_bilbao(
      guide = "none"
    )+  
  coord_flip()

It’s hard to visualize well with the completely overlapping points. I’ll plot histograms for very 10th step.

galton_board |> 
  filter(step %in% seq(10, 70, by = 10)) |> 
  ggplot(aes(position, factor(step)))+
    stat_histinterval(
      breaks = breaks_fixed(width = 2),
      aes(fill = after_stat(pdf))
    )+
    khroma::scale_fill_bilbao(
      guide = "none"
    )+
    scale_y_discrete(
      limits = factor(seq(70, 10, by = -10))
    )

Infinitesimal Galton Board

Same as before, but now instead of flipping a coin for -1 and 1, values are sampled from U(1,1).

expand_grid(
  person = 1:1001,
  step = 1:78
) |> 
  mutate(
    flip = runif(
      n(),
      -1,
      1
    )
  ) |> 
  mutate(
    .by = person,
    position = cumsum(flip)
  ) ->
  inf_galton_board
inf_galton_board |> 
  ggplot(aes(step, position))+
    geom_line(
      aes(group = person),
      alpha = 0.05
    )+
  scale_x_reverse()+
  coord_flip()

inf_galton_board |> 
  filter(step %in% seq(10, 70, by = 10)) |> 
  ggplot(aes(position, factor(step)))+
    stat_slabinterval(
      aes(fill = after_stat(pdf)), 
      fill_type = "gradient"
    )+
    khroma::scale_fill_bilbao(
      guide = "none"
    )+
    scale_y_discrete(
      limits = factor(seq(70, 10, by = -10))
    )

Nice.

I’m not 100% sure how to get a normal density estimate superimposed in that same plot. So I’ll fake it instead.

inf_galton_board |> 
  filter(step %in% seq(10, 70, by = 10)) ->
  ten_steps

ten_steps |> 
  summarise(
    .by = step,
    mean = mean(position),
    sd = sd(position)
  ) |> 
  nest(
    .by = step
  ) |> 
  mutate(
    dist = map(
      data,
      ~tibble(
        position = seq(-20, 20, length = 100),
        dens = dnorm(
          position, 
          mean = .x$mean, 
          sd = .x$sd
        )
      )
    )
  ) |> 
  unnest(dist) |> 
  mutate(
    dens_norm = dens/max(dens)
  )->
  distributions
1
Calculating the distribution parameters for each step grouping.
2
Mapping over the distribution parameters to get density values in a tibble.
3
For plotting over the stat_slab() output, normalizing the density to max out at 1.
ten_steps |> 
  ggplot(aes(position))+
    stat_slabinterval(
      aes(fill = after_stat(pdf)), 
      fill_type = "gradient"
    )+
    geom_line(
      data = distributions,
      aes(y = dens_norm)
    )+
    khroma::scale_fill_bilbao(
      guide = "none"
    )+
    facet_wrap(
      ~step, labeller = label_both
    )+
    theme_no_y()

Comparing parameters

For my own interest, I wonder how much discrete sampling from -1, 1 vs the uniform distribution affects the σ.

galton_board |> 
  summarise(
    .by = step,
    pos_sd = sd(position)
  ) |> 
  mutate(
    sampling = "discrete"
  ) ->
  galton_sd

inf_galton_board |> 
  summarise(
    .by = step,
    pos_sd = sd(position)
  ) |> 
  mutate(
    sampling = "uniform"
  )->
  inf_galton_sd
bind_rows(
  galton_sd, 
  inf_galton_sd
) |> 
  ggplot(aes(step, pos_sd))+
    geom_line(
      aes(color = sampling),
      linewidth = 1
    )+
    expand_limits(y = 0)+
    labs(
      y = expression(sigma)
    )

Messing around with a few obvious values of x, in U(x,x), I can’t tell what would approximate the discrete sampling. 2 is too large, and 1.5 is too small. The answer is probably some horror like πe.

Model Diagrams

Here’s the model described in the text.

yiN(μi,σ)

μi=βxi

βN(0,10)

σExponential(1)

He also defines a sampling distribution over x1, but idk if that’s right. Here’s my attempt at converting that into a mermaid diagram.

~~~N(μᵢ, σ)yᵢβ×xᵢμᵢExp(1)σN(0,10)

It’s ok. No quite a Kruschke diagram.

Another example.

Let me try to write out the diagram for something like y ~ x + (1|z).

y(μi,σ0)

μi=β0+β1xi+γi

β0N(0,10)

β2N(0,2)

γi=Γzi

ΓjN(0,σ1)

σ0Exponential(1)

σ1Exponential(1)

Geeze, idk. That double subscript feels rough, and I don’t know the convention for describing the random effects.

~~~~~~N(μᵢ, σ₀)yᵢβ₀+β₁γᵢμᵢN(0,10)N(0,2)Γ[zᵢ]N(0, σ₁)Exp(1)σ₀Exp(1)σ₁

Yeah, this is too tall. Will have to think about this. The Krushke style diagram is the most compressed version imo.

Footnotes

  1. Not literally πe though, cause that’s too small at 1.156↩︎