Normalize formant tracks using Discrete Cosine Transform normalization
Usage
norm_track_generic(
.data,
...,
.token_id_col,
.by = NULL,
.by_formant = FALSE,
.by_token = FALSE,
.time_col = NULL,
.L = 0,
.S = 1/sqrt(2),
.pre_trans = function(x) x,
.post_trans = function(x) x,
.order = 5,
.return_dct = FALSE,
.drop_orig = FALSE,
.names = "{.formant}_n",
.silent = FALSE,
.call = caller_env()
)
Arguments
- .data
A data frame containing vowel formant data
- ...
<tidy-select>
One or more unquoted expressions separated by commas. These should target the vowel formant data columns.- .token_id_col
<data-masking>
A column that identifies token ids.- .by
<tidy-select>
A selection of columns to group by. Typically a column of speaker IDs.- .by_formant
Whether or not the normalization method is formant intrinsic.
- .by_token
Whether or not the normalization method is token intrinsic
- .time_col
<data-masking>
A time column. (optional)- .L
An expression defining the location parameter. See Details for more information.
- .S
An expression defining the scale parameter. See Details for more information.
- .pre_trans
A function to apply to formant values before normalization.
- .post_trans
A function to apply to formant values after normalization.
- .order
The number of DCT parameters to use.
- .return_dct
Whether or not the normalized DCT coefficients themselves should be returned.
- .drop_orig
Should the originally targeted columns be dropped.
- .names
A
glue::glue()
expression for naming the normalized data columns. The"{.formant}"
portion corresponds to the name of the original formant columns.- .silent
Whether or not the informational message should be printed.
- .call
Used for internal purposes.
Details
This will normalize vowel formant tracks in the following steps:
Any
.pre_trans
transformations will be applied to the formant data.The Discrete Cosine Transform will be applied to the formant data.
Location
.L
and Scale.S
expressions will be used to summarize the zeroth DCT coefficients.These location and scale will be used to normalize the DCT coefficients.
If
.return_dct = TRUE
, these normalized DCT coefficients will be returned. Otherwise, the Inverse Discrete Cosine Transform will be applied to the normalized DCT coefficients.Any
.post_trans
transformations will be applied.
Location and Scale expressions
All normalization procedures built on norm_track_generic work by normalizing DCT coefficients directly. If \(F_k\) is the kth DCT coefficient the normalization procedure is
$$ \hat{F}_k = \frac{F_k - L'}{\sqrt{2}S} $$ $$ L' = \begin{cases} L & \text{for }k=0\\ 0 & \text{for }k>0 \end{cases} $$
Rather than requiring users to remember to multiply expressions for \(S\) by \(\sqrt{2}\), this is done by norm_track_generic itself, to allow greater parallelism with how norm_generic works.
The expressions for calculating \(L\) and \(S\) can be
passed to .L
and .S
, respectively. Available values for
these expressions are
.formant
The original formant value
.formant_num
The number of the formant. (e.g. 1 for F1, 2 for F2 etc)
Along with any data columns from your original data.
Examples
library(tidynorm)
library(dplyr)
ggplot2_inst <- require(ggplot2)
track_subset <- speaker_tracks |>
filter(
.by = c(speaker, id),
if_all(
F1:F3,
.fns =\(x) mean(is.finite(x)) > 0.9
),
row_number() %% 2 == 1
)
track_norm <- track_subset |>
norm_track_generic(
F1:F3,
.by = speaker,
.token_id_col = id,
.by_formant = TRUE,
.L = median(.formant, na.rm = TRUE),
.S = mad(.formant, na.rm = TRUE),
.time_col = t,
.drop_orig = TRUE,
.names = "{.formant}_mad"
)
if(ggplot2_inst){
track_norm |>
ggplot(
aes(F2_mad, F1_mad, color = speaker)
)+
stat_density_2d(bins = 4)+
scale_x_reverse()+
scale_y_reverse()+
scale_color_brewer(palette = "Dark2")+
coord_fixed()
}
# returning the DCT coefficients
track_norm_dct <- track_subset |>
norm_track_generic(
F1:F3,
.by = speaker,
.token_id_col = id,
.by_formant = TRUE,
.L = median(.formant, na.rm = TRUE),
.S = mad(.formant, na.rm = TRUE),
.time_col = t,
.drop_orig = TRUE,
.return_dct = TRUE,
.names = "{.formant}_mad"
)
track_norm_means <- track_norm_dct |>
summarise(
.by = c(speaker, vowel, .param),
across(
ends_with("_mad"),
mean
)
) |>
reframe_with_idct(
ends_with("_mad"),
.by = speaker,
.token_id_col = vowel,
.param_col = .param
)
if(ggplot2_inst){
track_norm_means|>
ggplot(
aes(F2_mad, F1_mad, color = speaker)
)+
geom_path(
aes(
group = interaction(speaker, vowel)
)
)+
scale_x_reverse()+
scale_y_reverse()+
scale_color_brewer(palette = "Dark2")+
coord_fixed()
}