Skip to contents

Bark Difference Track Normalization

Usage

norm_track_barkz(
  .data,
  ...,
  .token_id_col,
  .by = NULL,
  .time_col = NULL,
  .order = 5,
  .return_dct = FALSE,
  .drop_orig = FALSE,
  .names = "{.formant}_bz",
  .silent = FALSE
)

Arguments

.data

A data frame containing vowel formant data

...

<tidy-select> One or more unquoted expressions separated by commas. These should target the vowel formant data columns.

.token_id_col

<data-masking> A column that identifies token ids.

.by

<tidy-select> A selection of columns to group by. Typically a column of speaker IDs.

.time_col

<data-masking> A time column. (optional)

.order

The number of DCT parameters to use.

.return_dct

Whether or not the normalized DCT coefficients themselves should be returned.

.drop_orig

Should the originally targeted columns be dropped.

.names

A glue::glue() expression for naming the normalized data columns. The "{.formant}" portion corresponds to the name of the original formant columns.

.silent

Whether or not the informational message should be printed.

Value

A data frame of either normalized formant tracks, or normalized DCT parameters.

A data frame of Watt & Fabricius normalized formant tracks.

Details

This is a within-token normalization technique. First all formants are converted to Bark (see hz_to_bark), then, within each token, F3 is subtracted from F1 and F2.

$$ \hat{F}_{ij} = F_{ij} - L_j $$

$$ L_j = F_{3j} $$

References

Syrdal, A. K., & Gopal, H. S. (1986). A perceptual model of vowel recognition based on the auditory representation of American English vowels. The Journal of the Acoustical Society of America, 79(4), 1086–1100. https://doi.org/10.1121/1.393381

Examples

library(tidynorm)
library(dplyr)
ggplot2_inst <- require(ggplot2)

track_subset <- speaker_tracks |>
  filter(
    .by = c(speaker, id),
    if_all(
      F1:F3,
      .fns =\(x) mean(is.finite(x)) > 0.9
    ),
    row_number() %% 2 == 1
  )

track_norm <- track_subset |>
  norm_track_barkz(
    F1:F3,
    .by = speaker,
    .token_id_col = id,
    .time_col = t,
    .drop_orig = TRUE
  )

if(ggplot2_inst){
  track_norm |>
    ggplot(
      aes(F2_bz, F1_bz, color = speaker)
    )+
    stat_density_2d(bins = 4)+
    scale_x_reverse()+
    scale_y_reverse()+
    scale_color_brewer(palette = "Dark2")+
    coord_fixed()
}



# returning the DCT coefficients
track_norm_dct <- track_subset |>
  norm_track_barkz(
    F1:F3,
    .by = speaker,
    .token_id_col = id,
    .time_col = t,
    .drop_orig = TRUE,
    .return_dct = TRUE,
    .names = "{.formant}_bz"
  )

track_norm_means <- track_norm_dct |>
  summarise(
    .by = c(speaker, vowel, .param),
    across(
      ends_with("_bz"),
      mean
    )
  ) |>
  reframe_with_idct(
    ends_with("_bz"),
    .by = speaker,
    .token_id_col = vowel,
    .param_col = .param
  )


if(ggplot2_inst){
  track_norm_means|>
    ggplot(
      aes(F2_bz, F1_bz, color = speaker)
    )+
    geom_path(
      aes(
        group = interaction(speaker, vowel)
      )
    )+
    scale_x_reverse()+
    scale_y_reverse()+
    scale_color_brewer(palette = "Dark2")+
    coord_fixed()
}