Bark Difference Normalize
Usage
norm_barkz(
.data,
...,
.by = NULL,
.drop_orig = FALSE,
.keep_params = FALSE,
.names = "{.formant}_bz",
.silent = FALSE
)
Arguments
- .data
A data frame containing vowel formant data
- ...
<tidy-select>
One or more unquoted expressions separated by commas. These should target the vowel formant data columns.- .by
<tidy-select>
A selection of columns to group by. Typically a column of speaker IDs.- .drop_orig
Whether or not to drop the original formant data columns.
- .keep_params
Whether or not to keep the Location (
*_.L
) and Scale (*_.S
) normalization parameters- .names
A
glue::glue()
expression for naming the normalized data columns. The"{.formant}"
portion corresponds to the name of the original formant columns.- .silent
Whether or not the informational message should be printed.
Details
This is a within-token normalization technique. First all formants are converted to Bark (see hz_to_bark), then, within each token, F3 is subtracted from F1 and F2.
$$ \hat{F}_{ij} = F_{ij} - L_j $$
$$ L_j = F_{3j} $$
References
Syrdal, A. K., & Gopal, H. S. (1986). A perceptual model of vowel recognition based on the auditory representation of American English vowels. The Journal of the Acoustical Society of America, 79(4), 1086–1100. https://doi.org/10.1121/1.393381
Examples
library(tidynorm)
ggplot2_inst <- require(ggplot2)
#> Loading required package: ggplot2
speaker_data_barkz <- speaker_data |>
norm_barkz(
F1:F3,
.by = speaker,
.names = "{.formant}_bz"
)
#> Normalization info
#> • normalized `F1`, `F2`, and `F3`
#> • normalized values in `F1_bz`, `F2_bz`, and `F3_bz`
#> • grouped by `speaker`
#> • formant extrinsic
#>
## this is equivalent to
# speaker_data |>
# norm_generic(
# F1:F3,
# .by = speaker,
# .by_token = T,
# .L = .formant[3]
# )
if(ggplot2_inst){
ggplot(
speaker_data_barkz,
aes(
F2_bz,
F1_bz,
color = speaker
)
)+
stat_density_2d(
bins = 4
)+
scale_color_brewer(
palette = "Dark2"
)+
scale_x_reverse()+
scale_y_reverse()+
coord_fixed()
}
#> Warning: Removed 42 rows containing non-finite outside the scale range
#> (`stat_density2d()`).