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Abstract This paper provides an overview of the Discrete Cosine Transform
(DCT) as a method for smoothing vowel formant tracks, as well as a procedure
to take any speaker normalization method that has been defined for formant
point measurements and define an equivalent method to be applied directly
to DCT coefficients. This procedure is followed for three established normal)
ization methods, and the difference between DCT normalization and formant
point normalization is found to be marginal.
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1 Introduction
Some landmark research in North American dialectology and sociolinguistics of
vowels has relied on single point measurements of F1 and F2 to characterize the
entire vowel (Labov 2001; Labov et al. 2006). However, there is a wealth of work that
makes it clear that full formant dynamics, or Vowel Intrinsic Spectral Change (Nearey
and Assmann 1986), have important dialectal and sociolinguistic properties (e.g. Fox
and Jacewicz 2009; Risdal and Kohn 2014; Docherty et al. 2015; Tanner et al. 2022).
Additionally, vowel formant extraction tools such as the FAVE suite (Rosenfelder et
al. 2024), fasttrack (Barreda 2021a; Fruehwald and Barreda 2024), and new)fave
(Fruehwald 2025) make full formant tracks available to researchers, and curve fitting
techniques are becoming more widely adopted (Sóskuthy 2021).

One open question about the use of full vowel formant tracks is how normalization for
differences in vocal tract length between speakers ought to be carried out. There is
an extensive literature on the topic in the use of point measurements (see Adank et al.

*I would like to thank Santiago Barreda, Kevin McGowan, Dan Villarreal, Jack Rechsteiner, the
journal’s anonymous reviewers, and the audience at NWAV 52 for feedback on this work.
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2004), but how these methods should (or could) be applied to full formant tracks has
not been addressed as fully.

In this paper, I will be exploring the use the Discrete Cosine Transform (DCT) to smooth
and normalize formant tracks. The DCT was chosen, in part, because it is used in
the fasttrack method to optimize the Linear Predictive Coding parameters in formant
extraction, and the fasttrack python implementation allows users to save the DCT
coefficients. I will demonstrate that it is possible to carry out speaker normalization
directly on the DCT coefficients, which can then themselves be used for quantitative
analysis.

The goal of this paper is not to compare normalization techniques and evaluate their
benefits and drawbacks. Rather, it is to demonstrate that if we were to construe any
given formant normalization technique as a function 𝑓(𝑥) that is applied to measured
formant tracks, there is an approximately equivalent function 𝑔(𝑦) that can applied to
the DCT coefficients of formant tracks. The specific procedure for defining 𝑔(𝑦) given
𝑓(𝑥) is as follows:

1. Any non-linear transformations (log, exponentiation, Mel, Bark, etc) must be
applied to formant track data before the DCT is applied.

2. For location parameters (values added or subtracted in the normalization):
• They should be estimated using the 0th DCT parameter.
• They should be applied to just the 0th DCT parameter.

3. For scale parameters (values divided or multiplied by in the normalization):
• They should be estimated using the 0th DCT parameter and multiplied by 

√
2.¹

• They should be applied to all DCT parameters.

1.1 Notation conventions
There are a number of mathematical formulae in this paper and mathematical notation
used throughout. I have chosen to follow the following notation conventions.

𝐹 , 𝑥
A formant track. 𝐹  is used when discussing formants specifically, and 𝑥 when
discussing a signal in general.

̄𝐹𝑖

For a single vowel token, the average across its entire formant track.

𝑦
A vector of Discrete Cosine Transform coefficients (described below).

¹This 
√

2 constant presumes the “orthogonalization” of the DCT. See Appendix C for more informa)
tion.
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𝑖
A variable for formant numbers. For example 𝐹1 is the first formant, and 𝐹𝑖 is the 𝑖𝑡ℎ

formant.

𝑗
A variable for an observation number. For example, 𝑥3 would be the third value from
a signal 𝑥. This will sometimes be used interchangeably to refer to the 𝑗𝑡ℎ value in
a signal, and sometimes to the 𝑗𝑡ℎ vowel token in a data set.

𝑘
A variable for a Discrete Cosine Transform coefficient. For example 𝑦0 will be the
0th coefficient, and 𝑦𝑘 will be the 𝑘𝑡ℎ coefficient.

2 The Discrete Cosine Transform
The Discrete Cosine Transform (DCT) is a general purpose curve fitting method (it is
the basis of jpeg image compression (Wallace 1992) ). It is sometimes used directly on
audio spectra (e.g. Zahorian and Jagharghi 1991; Zahorian and Jagharghi 1993; Guzik
and Harrington 2007; Jannedy and Weirich 2017) and has also been used to model
and classify vowel formant trajectories (Watson and Harrington 1999; Hillenbrand et
al. 2001; Morrison 2009; Williams and Escudero 2014; Williams et al. 2015; Cox and
Palethorpe 2019). Versions of the DCT are available in the fftw R package (Mersmann
2024) (which itself calls the fftw C library) and in the scipy python package (Virtanen
et al. 2020). It has also been implemented in the emuR R package (Jochim et al. 2024)
and the fasttrackpy python package (Fruehwald and Barreda 2024).

The DCT re–describes a continuous function in terms of weights on a bank of cosine
functions oscillating at increasing frequencies. There are several definitions of the
DCT; for the purpose of this paper, we’ll be using the definition of the DCT as used
in the python scipy library (Virtanen et al. 2020) both because this is a standard and
replicable method, and because this is how the fasttrackpy library implements and
saves these parameters (see Section A for more information).

The mathematical definition for the 𝑘th DCT is given in Equation 1.

𝑦𝑘 = 1
𝑜𝑁

∑
𝑁−1

𝑗=0
𝑥𝑗 cos(𝜋𝑘(2𝑗 + 1)

2𝑁
) (1)

𝑜 = {
√

2 for 𝑘 = 0
1 for 𝑘 > 0

For the purpose of this paper, it’s not necessary to understand every component of
Equation 1 in detail. Figure 1 annotates the formula with the important pieces that will
come into play. A signal 𝑥 (in our case, a formant track) is multiplied by a cosine function
of the same length, then summed. Then, this sum is normalized (divided by the length
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of the signal), resulting in the DCT coefficient. The cosine function changes depending
on the number of the DCT coefficient.

Figure 1:  Annotated DCT Definition

Figure 2 plots the 0th through 2nd cosine functions that the coefficients calculated in
Equation 1 weight.

Figure 2:  DCT basis functions

The inverse DCT takes the coefficients generated by Equation 1 and returns the original
signal. The Inverse DCT equation is given in Equation 2.

𝑥𝑗 =
√

2𝑦0 + 2 ∑
𝑁−1

𝑘=1
𝑦𝑘 cos(𝜋𝑘(2𝑗 + 1)

2𝑁
) (2)

To get the rate of change of a signal from its DCT coefficients, we need the first deriv)
ative of Equation 2, given in Equation 3

𝛿𝑥𝑗

𝛿𝑗
= −2 ∑

𝑁−1

𝑘=1
𝑦𝑘

𝜋𝑘
𝑁

sin(𝜋𝑘(2𝑗 + 1)
2𝑁

) (3)
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To get the acceleration in a signal from its DCT coefficients, we need the second deriv)
ative of Equation 2, given in

𝛿2𝑥𝑗

𝛿𝑗2 = −2 ∑
𝑁−1

𝑘=1
𝑦𝑘(𝜋𝑘

𝑁
)

2

cos(𝜋𝑘(2𝑗 + 1)
2𝑁

) (4)

3 Benefits of the DCT
There are a number of general benefits to using DCT coefficients for analyzing vowel
formant tracks which I will outline here. It’s worth noting at this point that several of
the benefits only really hold for within)speaker analyses. In order to apply some of
these methods to multi)speaker analyses, the DCT coefficients will need to be speaker
normalized (the subject of the remainder of this paper).

3.1 Smoothing by truncation
The DCT returns the same number of coefficients as there are data points in the original
signal. With all of these DCT coefficients, the original signal can be fully reconstructed
by applying the inverse DCT. For example, the F1 formant track in Figure 3 consists of
63 measurement points (the plotted points), so the application of the DCT returns 63
DCT coefficients. When applying the inverse DCT to all 63 coefficients, the resulting
curve (plotted in the red line) recreates the original signal.

Figure 3:  Recreation of the original signal by applying the inverse DCT.

The first 3 DCT coefficients have relatively interpretable meanings which can be seen
in their shapes in Figure 2.

• 0th: The overall level of the curve

• 1st: The amount of fall to the curve

• 2nd: The amount of fall)rise to the curve
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In fact, several papers have been successful classifying vowel phonemes using just
these first three coefficients (Watson and Harrington 1999; Williams et al. 2015).
Higher DCT coefficients capture higher frequency oscillations of a signal. For example,
the cosine function that the 9th DCT coefficient weights is plotted in Figure 4.

Figure 4:  The 9th dct basis function.

While these higher frequency oscillations are important for perfectly recreating the
original signal, they are probably not linguistically meaningful with respect to a single
vowel’s formant track. By truncating the number of DCT coefficients used to describe
a formant track to the first 3 (as done in prior work) or 5 (as done in fasttrackpy), we
get back a smoothed version of the formant track when applying the inverse DCT.

Figure 5:  Greater smoothing achieved by using fewer high frequency coefficients

The benefit here is that the degree of desired smoothing can be arbitrarily specified
after the DCT has been applied by simply using just the first 𝑛 coefficients. This is in
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contrast with some other commonly used curve fitting methods for vowel formants,
like cubic regression splines (Sóskuthy 2017, 2021), where the number of basis func)
tions (and therefore coefficients) must be specified before the curve is fit, and cannot
be altered after the fact.

3.2 Data Compression
While this may be a diminishing concern given increasing computational power, by
using just the first 5 DCT coefficients for analysis, instead of full formant track data,
the volume of data that needs to be stored or loaded into memory for quantitative
analysis is dramatically decreased. As shown in Table  1, the size of the data in the
Philadelphia Neighborhood Corpus (PNC) (Labov and Rosenfelder 2011) is about an
order of magnitude smaller when using DCT coefficients than when using the raw
formant track data.

Table 1:  Comparison of data size for formant track data from the Philadelphia Neigh)
borhood Corpus. Both number of lines in comma separated files and total size on disk

are shown.

lines size

tracks 46,973,521 17 GB

dct coefs 4,943,165 999 MB

ratio 9.5 16.5

3.3 Averaging Formant Tracks
Averaging over formant tracks of different durations is not straightforward, as they
will have a different number of sampled values. Figure 6 illustrates this problem with
three example formant tracks for the vowel /ay/ from one speaker in the Philadelphia
Neighborhood Corpus. It would perhaps be inappropriate to average the final sample
from a short token with the aligned midpoint sample from a longer token. Aligning the
beginnings and ends tokens in, for example, proportional time, creates a new problem
that the samples in between are no longer aligned, making point)wise averaging
impossible.
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Figure 6:  Three F1 formant tracks of different duration. a. Formant values against
actual time. b. Formant values against proportional time

Instead of point)wise averaging, or fitting a smoothing model, we can instead average
over the DCT coefficients for these three tokens (Table 2), then use these averages
as DCT coefficients themselves to get the inverse DCT. The result of this averaging
process is plotted in Figure 7.

Table 2:  Averaging over DCT coefficients

0 1 2 3 4

token

1 471.3 26.0 −17.8 5.6 −0.3

2 428.3 72.6 −14.1 2.3 −4.5

3 473.6 51.0 −13.6 −3.2 7.3

average 457.7 49.9 −15.2 1.5 0.8
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Figure 7:  The result of the inverse DCT when applied to the average DCT coefficients
of the three formant tracks.

3.4 Modelling with DCT coefficients
Similarly to how we can calculate averages more easily with DCT coefficients, we can
also fit regression models more easily. Let’s say, for example, we wanted to model the
effect of following voicing on the entire F1 trajectory of /ay/ (plotted in Figure 8). To do
this with the formant tracks themselves, we would need to fit a generalized additive
model with an interaction between the smoothing term and voicing context, taking into
account autocorrelation and, perhaps, random smooths by token (Sóskuthy 2021).

Figure 8:  The effect of voicing on F1 formant tracks for one speaker.

With DCT coefficients, on the other hand, we could fit a linear model, using each
individual DCT coefficient as the outcome, and the voicing effect as the predictor. This
is a form of functional regression (Ramsay and Silverman 2006; Gubian et al. 2015).
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Listing 1 shows the R code involved for fitting such a model, with the model results
summarized in Table 3.

Listing 1:  A model

ay_model <- lm(
  cbind(y0, y1, y2, y3, y4) ~ context,
  data = ay_data
)

Table 3:  Regression coefficients over DCTs

y0 y1 y2 y3 y4

(Intercept) 523.6 39.0 −21.6 1.5 −3.9

pre)voiceless −72.5 5.1 13.1 −2.2 1.9

In Table 3, the intercept terms for each DCT coefficient correspond to the average
of that coefficient across the reference level (the elsewhere context), and the pre)
voiceless terms correspond to the difference of the pre)voiceless context from the
reference level for each coefficient.

Interestingly, if we apply the inverse DCT to these difference terms, the result is the
difference curve between the the two voicing contexts, plotted in Figure 9.

Figure 9:  The fitted difference curve between pre)voiceless /ay/ and /ay/ elsewhere.

More complex models exploring the difference in formant dynamics between these
two allophones could be specified, but by using DCT coefficients as the outcome
variables, we don’t need to include time across the formant track in our predictors.
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3.5 Rate of change analysis
Given the definition of the first derivative of the signal in Equation 3, it’s also possible
to analyze the rate of change in formant dynamics. Figure 10 plots the predicted rate
of change for these two allophones of /ay/ based on the model fit above. These rate of
change curves were calculated directly from the DCT coefficients by plugging them
into Equation 3. This kind of analysis could be useful in research on hypo/hyper)artic)
ulation, how coarticulation influences sound change, etc.

Figure 10:  The rate of change of /ay/ allophones. The rate is in expressed in terms of
Hz per 0.01 change in proportional time.

3.6 Multi-speaker analysis
The ability to regress over DCT coefficients could be invaluable for research into, for
example, diachronic changes in formant dynamics. However this modeling approach,
along with the other benefits of DCT coefficients discussed above, is really only well
defined for within)speaker analyses. For example, Figure 11 plots formant trajectories
for the vowels /iy/, /ey/, /ay/, /uw/, /ow/ and /aw/ from two speakers in the PNC.
Specifically, DCT coefficients from each vowel class for each speaker were averaged,
and then the inverse DCT applied to result in the plotted trajectories.
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Figure 11:  Average vowel trajectories from unnormalized DCT coefficients.

The consistent differences in vowel space size and location between these two speak)
ers are also reflected in their DCT coefficients, such that any analysis combining their
data will face the same problems as using unnormalized formant point measurements.
For example, Speaker B’s /iy/ and /ey/ appear to be backer than Speaker A’s, but it’s
unclear how much of this is due to their overall smaller vowel space size versus having
a different vowel space target. In order to conduct multi)speaker analyses using DCT
coefficients, the DCT coefficients themselves will need to be normalized.

4 Transforming DCT Coefficients
Nearly all speaker normalization methods involve:

• Shifting the location of formant values by a constant 𝑙.

• Scaling formant values by a constant 𝑠.

𝐹 ′ = 𝑠(𝐹 + 𝑙) (5)

If there are coefficients 𝑦𝑘 that when the inverse DCT is applied to them return 𝐹 , then
there are coefficients 𝑦′

𝑘 that when the inverse DCT is applied to them return 𝐹 ′. The
goal of this section is to identify whether and how it is possible to directly transform
𝑦𝑘 to 𝑦′

𝑘. To achieve this, we’ll begin by identifying how shifting and scaling the input
signal by our desired 𝑙 and 𝑠 affect the resulting DCT coefficients.

4.1 Useful Equivalencies
In order to simplify the notation in the following section, we’ll define some equivalen)
cies.² The cosine term in Equation 1 will be replaced with 𝜓𝑗, a function over the signal
index 𝑗 and the DCT coefficient index 𝑘.

²I would like to thank a reviewer for the suggested notation for this section.
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𝜓𝑗(𝑘) = cos(𝜋𝑘(2𝑗 + 1)
2𝑁

) (6)

The normalizing constant will be replaced with 𝑐.

𝑐 = 1
𝑜𝑁

(7)

With these definitions, the DCT can be expressed as

𝑦𝑘 = 𝑐 ∑
𝑁−1

𝑗=0
𝑥𝑗𝜓𝑗(𝑘) (8)

There are some additional important equivalencies we’ll leverage below. The first is for
when 𝑘 = 0.

1 = 𝜓𝑗(0) (9)

Therefore, summing 𝜓𝑗(0) over 𝑗 will equal 𝑁 .

𝑁 = ∑
𝑁−1

𝑗=0
𝜓𝑗(0) (10)

Second, when 𝑘 > 0, summing 𝜓𝑗(𝑘) over 𝑗 will equal 0.

0 = ∑
𝑁−1

𝑗=0
𝜓𝑗(𝑘); 𝑘 > 0 (11)

4.2 Scaling the input
Let’s say we have a signal 𝑥 that we applied the DCT to to get 𝑦𝑘.

𝑦𝑘 = 𝑐 ∑
𝑁−1

𝑗=0
𝑥𝑗𝜓𝑗(𝑘) (12)

If our normalization method called for scaling 𝑥 by 𝑠, our input to the DCT would now
be 𝑠𝑥𝑗. The new DCT coefficients 𝑦′

𝑘 would be

𝑦′
𝑘 = 𝑐 ∑

𝑁−1

𝑗=0
(𝑠𝑥𝑗)𝜓𝑗(𝑘) (13)

As a constant, 𝑠 can be brought outside the summation.

𝑦′
𝑘 = 𝑠𝑐 ∑

𝑁−1

𝑗=0
𝑥𝑗𝜓𝑗(𝑘)

Now, everything to the right of 𝑠 is the same as Equation 12, so we can substitute in 𝑦𝑘,
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𝑦′
𝑘 = 𝑠𝑦𝑘 (14)

4.2.1 Scaling conclusion
The result here is that any scaling term applied to an input signal results in the same
scaling term being applied to all of its DCT coefficients.

4.3 Shifting the input
Again, let’s say we have a signal 𝑥 that we applied the DCT to to get 𝑦𝑘. If our normal)
ization method called for adding the constant 𝑙 to 𝑥, our input to the DCT would now
be (𝑥𝑗 + 𝑙). The new DCT coefficients 𝑦′

𝑘 would now be

𝑦′
𝑘 = 𝑐 ∑

𝑁−1

𝑗=0
(𝑥𝑗 + 𝑙)𝜓𝑗(𝑘) (15)

The summation term can be rewritten as the addition of two summation terms.

𝑦′
𝑘 = 𝑐(∑

𝑁−1

𝑗=0
𝑥𝑗𝜓𝑗(𝑘) + ∑

𝑁−1

𝑗=0
𝑙𝜓𝑗(𝑘)) (16)

Then, we can distribute the normalizing term 𝑐 and move the constant 𝑙 outside of its
summation.

𝑦′
𝑘 = 𝑐 ∑

𝑁−1

𝑗=0
𝑥𝑗𝜓𝑗(𝑘) + 𝑙𝑐 ∑

𝑁−1

𝑗=0
𝜓𝑗(𝑘)) (17)

Everything to the left of the addition is the same as Equation 12, so we can substitute
in 𝑦𝑘.

𝑦′
𝑘 = 𝑦𝑘 + 𝑙𝑐 ∑

𝑁−1

𝑗=0
𝜓𝑗(𝑘) (18)

We can now use the equivalencies in Equation 10 and Equation 11 to evaluate Equa)
tion 18 when 𝑘 = 0 and when 𝑘 > 0.

For 𝑘 = 0, we’ll substitute both the sum of 𝜓𝑗(0) (Equation  10) and the normalizing
constant 𝑐 (Equation 7) to arrive at

𝑦′
0 = 𝑦0 + 𝑙 1√

2𝑁
𝑁 = 𝑦0 + 𝑙√

2
(19)

When 𝑘 > 0, the sum of 𝜓𝑗(𝑘) is 0 (Equation  11), which eliminates the second term
entirely.

𝑦′
𝑘>0 = 𝑦𝑘>0 + 0𝑙𝑐 = 𝑦𝑘>0 (20)
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4.3.1 Shifting conclusion
If an input signal is shifted by 𝑙, its 0th DCT coefficient will be shifted by 𝑙√

2 , and its
remaining DCT coefficients will remain the same.

4.4 Non-linear transforms of the input
Some speaker normalization procedures involve transformations of the signal that
are non)linear. The most common one is taking the logarithm of formant values. If we
logged an input signal 𝑥, its DCT coefficients would be given as

𝑦′
𝑘 = 𝑐 ∑

𝑁−1

𝑗=0
log(𝑥𝑗)𝜓𝑗(𝑘) (21)

There are no additional equivalences we can leverage here to re)express 𝑦′
𝑘 as a trans)

formation of 𝑦𝑘. In order to calculate 𝑦′
𝑘, we must directly transform the original signal,

then apply the DCT.

4.5 DCT Coefficient Transformation Summary
In summary, if we want to shift our formant values by some value 𝑙 and scale them by
some value 𝑠:

• We need to add 𝑙√
2  to the 0th DCT coefficient (Equation 19).

• We don’t add anything to the remaining DCT coefficients (Equation 20).

• We need to scale all DCT coefficients by 𝑠 (Equation 14).

Additionally, for non)linear transformations of formant frequencies, there is no way to
transform the DCT coefficients of the original values directly into DCT coefficients of
the transformed values. Instead, the entire DCT needs to be applied to the transformed
formants directly.

5 Estimating normalization parameters
Now that we understand how to shift DCT coefficients by 𝑙 and scale them by 𝑠, we need
to establish how to get these 𝑙 and 𝑠 normalization parameters from DCT coefficients.
The two most common normalization parameters are the mean and standard deviation
over vowels, so we will focus on those.

5.1 Calculating means
Let’s begin with 𝐹  as a formant track for a single vowel token, and 𝑦𝑘 as the coefficients
we get from applying the DCT to 𝐹 . As we already established in Equation 9, 𝜓𝑗(0) =
1, which means the 0th DCT coefficient can be given as

𝑦0 = 1√
2

1
𝑁

∑
𝑁−1

𝑗=0
𝐹𝑗 (22)
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The sum of all values in a vector divided by the number of values in the vector is the
mean of that vector, which we can represent with ̄𝐹 . So, the 0th coefficient is equal to
the mean of 𝐹 , divided by 

√
2.

𝑦0 = 1√
2

̄𝐹 (23)

And therefore

̄𝐹 =
√

2𝑦0 (24)

The 
√

2 constant will carry through any functions that are weighted sums. So if the
function 𝑓(𝑥) is a weighted sum,

𝑓( ̄𝐹) =
√

2𝑓(𝑦0) (25)

The mean is a weighted sum, so

mean ( ̄𝐹) =
√

2 mean (𝑦0) (26)

5.1.1 Shifting by the mean
Let’s use mean( ̄𝐹) as our desired location parameter 𝑙 by which to shift all vowel tokens.
We’ve already established in Equation 19 and Equation 20 that this will involve only
changes to the 0th DCT coefficient for the 𝑗𝑡ℎ token. If we substitute Equation 26 into
Equation 19, we get

𝑦′
0𝑗 = 𝑦0𝑗 −

√
2 mean (𝑦0)√

2
= 𝑦0𝑗 − mean (𝑦0) (27)

Because 
√

2 cancels out in Equation 27, to center all DCT coefficients on the mean
across tokens, we just need to center 𝑦0 on the mean across 𝑦0.

5.2 Calculating standard deviations
The standard deviation over ̄𝐹  is not a weighted sum, but as it happens for the standard
deviation specifically, there is still a straightforward relationship between formant
values and 𝑦0. Firstly, the standard deviation across ̄𝐹  can be given as

sd( ̄𝐹) = √∑ ( ̄𝐹𝑗 − mean( ̄𝐹))2

𝑁
(28)

Substituting in Equation 24 and Equation 26, we have

sd( ̄𝐹) = √∑ (
√

2𝑦0𝑗 −
√

2 mean(𝑦0))
2

𝑁
(29)

This can be simplified in a few steps.
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sd( ̄𝐹) = √∑
√

22(𝑦0𝑗 − mean(𝑦0))
2

𝑁
(30)

sd( ̄𝐹) = √∑ 2(𝑦0𝑗 − mean(𝑦0))
2

𝑁

sd( ̄𝐹) = √2
∑ (𝑦0𝑗 − mean(𝑦0))

2

𝑁

sd( ̄𝐹) =
√

2√∑(𝑦0𝑗 − mean(𝑦0))
𝑁

Resulting in

sd( ̄𝐹) =
√

2 sd(𝑦0) (31)

5.2.1 Scaling by the standard deviation
Let’s use 1

sd( ̄𝐹)  as our scaling parameter 𝑠 by which to scale all vowel tokens. By substi)
tuting Equation 31 into Equation 14, we get

𝑦′
𝑘𝑗 = 1√

2 sd (𝑦0)
𝑦𝑘𝑗 (32)

So, when scaling by the standard deviation, or by a linear function over 𝑦0, we need
to multiply the result by 

√
2, and then use it as a scaling parameter over all DCT

coefficients.

6 Example Application
In this section, we’ll take three normalization methods that were defined over formant
point measurements, and redefine DCT normalization methods as outlined above.
These three methods were chosen because they cover all three possibilities of shifting
and scaling.

Table 4:  Example Normalization Methods

Method 𝑙 (shift) 𝑠 (scale)

ΔF (Johnson 2020) 0 1
𝛿(𝐹)

Nearey (Nearey 1978) − mean (log 𝐹) 1

Lobanov (Lobanov 1971) − mean (𝐹𝑖) 1
sd (𝐹𝑖)

We’ll be using Equation 5 (repeated here) as the generalized normalization equation
that all three methods have in common.
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𝐹 ′ = 𝑠(𝐹 + 𝑙) (33)

6.1 ΔF
Johnson (2020) proposes a vocal tract length normalization method that scales all
formants, but does not shift them. In the original paper, a quantity ΔF is defined, but
for the purpose of this paper, we’ll define it as a function 𝛿(𝐹).

𝛿(𝐹) = ∑
𝑀

𝑖=1
∑
𝑁

𝑗=1

𝐹𝑖𝑗

𝑖 − 0.5
(34)

Where 𝑖 is the formant number. The scaling and shifting parameters 𝑠 and 𝑙 for this
method are

𝑠 = 1
𝛿(𝐹)

; 𝑙 = 0 (35)

Plugging these parameters in to Equation 33, we get

𝐹 ′
𝑖𝑗 = 1

𝛿(𝐹)
𝐹𝑖𝑗 (36)

The 𝛿(𝐹) function is a weighted sum, so by Equation 25 we get

𝛿(𝐹) =
√

2𝛿(𝑦0) (37)

Since this method involves only scaling, we can plug Equation 37 into Equation 14 to
get the DCT coefficients of the normalized formants as

𝑦′
𝑘𝑖𝑗 = 1√

2𝛿(𝑦0)
𝑦𝑘𝑖𝑗 (38)

I used Equation 38 to normalize the DCT coefficients for F1 through F3 for two speakers
from the PNC. Figure 12 compares the resulting inverse DCT on the unnormalized vs Δ
F normalized formant tracks, focusing on just the long vowels.
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Figure 12:  Unnormalized vs Delta F normalized formant tracks.

6.2 Nearey
Nearey normalization (Nearey 1978) involves a single shift in location, and has been
recently argued to more closely reflect listeners perceptual categorization (Barreda
2021b).

Importantly, the first step of Nearey normalization involves taking the logarithm of
formant values. As discussed in Section 4.4, there is no way to directly transform DCT
coefficients of formants in Hz to DCT coefficients in log(Hz). Instead, the formants must
first be logged, and then have the DCT applied. For the sake of notational brevity, for
this section assume that any 𝐹  refers to a log transformed formant, and any 𝑦𝑘 refers
to the DCT coefficients of that log transformed formant.

The scaling (𝑠) and shifting (𝑙) parameters for Nearey normalization are:

𝑠 = 1; 𝑙 = − mean (𝐹) (39)

Plugging this into Equation 33, we get

𝐹 ′
𝑖𝑗 = 𝐹𝑖𝑗 − mean (𝐹) (40)

Since this involves shifting by the mean, we can use Equation 27 to define the DCT
normalization like so:

𝑦′
0𝑖𝑗 = 𝑦0𝑖𝑗 − mean (𝑦0) (41)

𝑦′
𝑘>0𝑖𝑗 = 𝑦𝑘>0𝑖𝑗

The 0th DCT parameter of every token will be shifted by the mean across 𝑦0, and all
other DCT parameters will stay the same.
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Using Equation 41, I Nearey normalized the DCT coefficients for F1 through F3 for the
same two speakers from the PNC as before. Figure 13 compares the resulting inverse
DCT on the unnormalized vs normalized formant tracks.

Figure 13:  Unnormalized vs Nearey normalized formant tracks.

6.3 Lobanov
When applied to other domains of data analysis, Lobanov normalization (Lobanov 1971)
is called z)scoring. The scaling (𝑠) and shifting (𝑙) parameters for Lobanov normalization
are:

𝑠 = 1
sd (𝐹𝑖)

; 𝑙 = − mean (𝐹𝑖) (42)

Plugging these parameters into Equation  33, we get the following definition of
Lobanov normalization.

𝐹 ′
𝑖𝑗 = 1

sd (𝐹𝑖)
(𝐹𝑖𝑗 − mean (𝐹𝑖)) (43)

The shifting parameter will only affect the 0th coefficient, and the scaling parameter
will affect all coefficients. Plugging the equivalencies from Equation  27 and Equa)
tion 31 into Equation 43, we get the following definition for Lobanov normalizing the
DCT coefficients.

𝑦0𝑖𝑗 = 1√
2 sd (𝑦0𝑖)

(𝑦0𝑖𝑗 − mean (𝑦0𝑖)) (44)

𝑦𝑘>0;𝑖𝑗 = 1√
2 sd (𝑦0𝑖)

𝑦𝑘>0;𝑖𝑗

Again, using Equation 44, I Lobanov normalized the DCT coefficients for F1 and F2
for the same two speakers from the Philadelphia neighborhood corpus. Figure  14
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compares the resulting average formant tracks when applying the inverse DCT to the
normalized coefficients.

Figure 14:  Unnormalized vs Lobanov normalized formant tracks.

6.4 Comparison to point-based normalization
It’s visually clear that none of the normalization methods resulted in complete overlap
of the formant trajectories for these two speakers. However, the goal of speaker nor)
malization is to eliminate (socio)linguistically irrelevant differences, while preserving
meaningful differences. While different approaches have been taken to evaluating
how well any given normalization method achieves this goal (Adank et al. 2004;
Barreda 2021b) the goal of this paper is just to define formant track normalization
based on formant point normalization methods. As such, we’ll briefly compare the
formant track results above to the same point)based methods.

For this comparison, the same two speakers’ formant track data was used, and formant
values at 50% of the duration taken as the point measurement. These point measures
were then normalized using the ΔF, Nearey, and Lobanov methods, as defined above.
Then, for the same set of vowels, the average F1 and F2 was estimated. Figure 15 plots
the result of all three methods as well as the unnormalized data.
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Figure 15:  Comparison of three different formant point normalization methods to
unnormalized formants.

Broadly similar patterns emerge in the normalized point values as did in the normal)
ized formant tracks (e.g. Speaker A’s fronter /uw/ and/ ow/ in all normalizations, and
speaker B’s slightly backer /iy/ and /ey/ in the delta F and Nearey normalizations).

6.5 Discussion
In this section, we’ve seen that normalization methods originally defined for formant
point measurements can be directly translated into DCT coefficient normalization
methods, and that the results on formant tracks are broadly similar to the results on
formant points.

To briefly reiterate and refine the process of defining a DCT normalization procedure:

1. Any non)linear transformations must be applied to the formant tracks before the
DCT is applied.

2. Any normalization parameters based on weighted sums (like the mean) or the
standard deviation can be estimated using the 0th DCT coefficient.

3. Location (𝑙) parameters can be directly added or subtracted from the 0th DCT coeffi)
cient only.
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4. Scale parameters (𝑠) need to be multiplied by 
√

2, and applied to all DCT coefficients.

7 Conclusion
The Discrete Cosine Transform is a formant track smoothing method that has already
found usage in phonetic research on vowel intrinsic spectral change. The use of DCT
coefficients comes with a number of concrete benefits to research on vowel formant
dynamics. The large body of research on speaker normalization can be drawn upon
to directly normalize DCT coefficients, as approximately equivalent normalization
functions can be defined for DCT coefficients based on the definition of the formant
normalization functions.

Appendices

A The scipy implementation of the DCT
The scipy documentation for the DCT describes three ways the DCT can be “normal)
ized”, and two ways the DCT can be “orthogonalized” or “non)orthogonalized”. All of
these options on the DCT alter the terms to the left of the sum in the DCT formula. Let’s
define and simplify these components.

I’ll use 𝑆 to indicate the sum function, which is defined as

𝑆𝑘(𝑥) = ∑
𝑁−1

𝑗=0
𝑥𝑗 cos(𝜋𝑘(2𝑗 + 1)

2𝑁
)

This term is unaltered by any of the different options scipy offers. Any given DCT
implementation can be given as

𝑦𝑘 = 𝑜𝑐𝑆𝑘(𝑥)

Where 𝑜 is the orthogonalization term and 𝑐 is the normalization constant.

The orthogonalization term is the easiest to define.

𝑜 = {
1 if orth = False
1√
2 if orth = True

The scipy documentation provides the mathematical definition for “backward” normal)
ization constant only, but the “forward” normalization can be inferred from its output.

𝑐 = {
2 if norm = backward
1
𝑁 if norm = forward

As a demonstration by example, we can define a python function for just the sum
function, then apply it to the formant track in Figure 16.
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Figure 16:  Demonstration formant track

Listing 2:  Definition of the DCT sum function

import numpy as np
from scipy.fft import dct

def S(x, k):
  j = np.arange(len(x))
  N = len(x)
  
  result = sum(
      x * np.cos(
        (np.pi * k * ((2*j)+1))/
        (2*N)
      )
    )
      
  return result

We can get the result of the sum function for the 0th and 1st DCT coefficients to then
examine the outcome of the different normalizations.

Listing 3:  Sum terms of the DCT

s_0 = S(f1, 0)
s_1 = S(f1, 1)

At this point, we can also get the 0th and 1st DCT coefficients from the scipy implemen)
tation.
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Listing 4:  Application of the scipy DCT

dct_backward = dct(f1, norm = "backward")
dct_forward  = dct(f1, norm = "forward")

The normalizing constant for norm = "backward" is documented to be 2, so multiplying
s_0 and s_1 by 2 should be equal to the 0th and 1st coefficients in dct_backward.

Listing 5:  Backward DCT normalization

np.array([
  2 * np.array([s_0, s_1]),
  dct_backward[0:2]
])

array([[87057.43, 11509.54],
       [87057.43, 11509.54]])

If the normalizing constant for norm="forward" is 1
𝑁 , dividing s_0 and s_1 by the length

of the input vector should be equal to the 0th and 1st coefficients in dct_forward.

Listing 6:  forward DCT normalization

N = len(f1)

np.array([
  np.array([s_0, s_1]) / N,
  dct_forward[0:2]
])

array([[690.93,  91.35],
       [690.93,  91.35]])

Admittedly, it would be more ideal to be able to reference the actual forward normal)
ization constant from the scipy documentation, but it is not provided.

B The DCT Basis
While the formula in Equation  1 can be used to calculate the DCT coefficients, the
formula to calculate the DCT basis functions in Figure 2 is different. If 𝐵 is a matrix
of the basis functions, the 𝑘𝑡ℎ basis function will be in its columns. To get 𝐵, we apply
the DCT with backward normalization to an identity matrix 𝐼  (that is, a matrix with
1s along the diagonal, and 0s elsewhere). The orthogonalization term 𝑜 is included in
Equation 45.
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𝐵𝑗𝑘 = 2𝑜 ∑
𝑁−1

𝑗=0
𝐼𝑗𝑘 cos(𝜋𝑘(2𝑗 + 1)

2𝑁
) (45)

This can be quickly implemented using the scipy DCT implementation like so:

Listing 7:  Getting the DCT basis functions

N = len(f1)
dct_basis = dct(np.eye(N), norm = "backward", orthogonalize = True)

C The choice of orthogonalization
The choice of “orthogonalizing” the DCT coefficients, that is, dividing the 0th coefficient
by 

√
2, does introduce some awkwardness into the normalization procedures described

here. Using the orthogonalized DCT was a design decision within fasttrackpy due to its
reliance on regression)based DCT coefficients.

As a practical issue, formant tracking sometimes returns missing, or NA values for
some, but not all, time points along a formant track. With missing values, the DCT
cannot be directly applied. However, the DCT coefficients can be approximated by
linear regression, using the DCT basis as the “predictors”.

Listing 8:  Comparison of direct vs regression)based DCT

dct_reg = np.linalg.lstsq(dct_basis, f1, rcond=None)[0]
dct_direct = dct(f1, norm = "forward", orthogonalize = True)

np.array([
  dct_reg[0:3],
  dct_direct[0:3]
])

array([[488.56,  91.35, -23.14],
       [488.56,  91.35, -23.14]])

Orthogonalizing the first coefficient was the only option that resulted in the same
coefficients for both regression and direct DCT within the scipy implementation.
Without orthogonalizing the first coefficient, the 0th coefficient is not equal between
the regression based DCT and direct DCT.
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Listing 9:  Comparison of direct vs regression)based non)orthogonalized DCT

dct_nonorth_basis = dct(np.eye(N), norm = "backward", orthogonalize = False)

dct_nonorth_reg = np.linalg.lstsq(dct_nonorth_basis, f1, rcond=None)[0]
dct_nonorth_direct = dct(f1, norm="forward", orthogonalize=False)

np.array([
  dct_nonorth_reg[0:3],
  dct_nonorth_direct[0:3]
])

array([[345.47,  91.35, -23.14],
       [690.93,  91.35, -23.14]])

Since the design decision to orthogonalize the DCT coefficients was made within
fasttrackpy, which was the tool used to arrive at these DCT coefficients in this paper,
this was also the version of the DCT used here.
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